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Linear equations of perturbed motion of a thin-walled elastic shell partially filled with
a heavy compressible fluid considered in the acoustic approximation are derived; the
principal [force] vector and the principal moment of the reactions exerted by the shell
on the "carmrying body" are determined, Perturbed motion with small vibrations is char-
acterized by the displacement of a certain point attached to the rigid shell fastening
contour, by rotation relative to this point, and by elastic displacements expressed as an
expansion in the proper vibration modes of the fastened fluid-containing shell., The
natural frequencies and vibration modes of a fluid-containing shell are determined by
means of a variational principle,

Allowance for the compressibility of the fluid makes it possible to consider vibrations
in the acoustic frequency spectrum. Moreover, calculations show that it may be neces-
sary to make allowance for it in calculating the lower frequencies of the elastic vibra-
tions of the shell, e, g, of the axisymmetric vibrations of relatively thick shells of revo-
lution, Allowance for gravity is necessary in considering vibrations in the frequency
spectrum of gravitational surface waves and vibrations of flexible fluid-containing shells,
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1, Formulation of the problem, Let us consider the perturbed motion of
a "carrying” body with an attached thin-walled elastic shell containing an ideal com-
pressible fluid, The shell is fastened to the body along the contour I' which we assume
to be nondeformable,

In order to avoid limiting ourselves to some specific model of a carrying body (e. g.
an absolutely rigid solid, we propose to isolate the fluid-containing shell alongthe contour
T', write the equations of perturbed motion for the shell and fluid, and determine the
principal vector T and principal moment H exerted by the shell on the carrying body
along the contour I' during perturbed motion, This will enable us to write out the equa-
tions of perturbed motion of the camrying body with allowance for the reactions T and
H, and thus to obtain the closed system of equations of perturbed motion,

The perturbed motion of a fluid-containing shell can be characterized by the vector
u of small displacements of the shell and by the potential @ of small displacements of
the fluid in the coordinate system Q2,73 ; the latter experiences translational motions
which coincide with the unperturbed motions of the body, We make the axis Oz, per-
pendicular to the unperturbed surface 0 of the fluid; this makes the direction of Oz,
opposite to that of the body-force vector g.

The equations of perturbed motion of a fluid-containing shell are obtainable with the
aid of the Lagrange variational principle

o1 + {{ mududs + p {{{ vaorsvorar —s4 =0 (1.1)
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Here II is the potential energy of the shell and the compressible fluid system; m, p,
¢ are the specific mass of the shell (its mass divided by the area of its middle surface),
the density of the fluid, and the velocity of sound in the latter, respectively; S and o
are the shell surface and the free surface of the fluid; 1 is the volume occupied by the
fluid; v is the unit vector of the exterior normal of the surface bounding the volume 7t;
gHic?*<L 1, p==const.

The quantity II, in (1.2) is the potential energy of shell deformation in perturbed
motion with allowance for the forces which arise in its middle surface during unperturbed
motion ; in addition, I, includes that part of the potential energy of the body forces of
the fluid which depends solely on the shell displacements and can be determined by
assuming that the fluid surface is fixed, The potential energy of the body forces of the
fluid associated with displacements of the free surface is represented by the second term
in expression (1, 2); the third term allows for the potential energy of compression of the
fluid in the acoustic approximation,

The varfation of the work performed by the specific surface load ¢ applied to the shell
with allowance for the reactions T and H between the shell and carrying body is given by

84 = { { qduds — Tou, — Ho0, (1.3)
s
where ugand 4 are the displacement vector of some point (' rigidly attached to the
contour I' and the vector of a small rotation about this point characterizing the motion
of the undeformed shell,
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Equation (1.1) can be used only in the event of fulfillment of kinematic boundary
conditions at the shell edges and of the kinematic boundary condition

0PJ)gv —vu=0 at So (1.4)
at the wet surface §, of the shell; the continuity condition
AD=0 b8~ (1.5)

must be fulfilled in the case of an incompressible flnid (¢ — oo0) .

2, Conditions of orthogonality of the natural vibration modes
of a flulde=containing shell, Let ussuppose that we know the natural frequen-
cies w,and proper vibration modes u,, @, of a fluid-containing shell, and that these
frequencies and modes satisfy the equations

2

AQ, + 2D, =0 in T

o a0
avn —wvu, =0 on S, ga—vn_")znd)n=0 on 6
L (u,) — 0*,mu, — 0?ep®,v=0 on § (2.1)

and the corresponding boundary conditions at the shell edges, The symbol L(«..) de-
notes the linear selfadjoint differential operator of the shell equations associated with

the potential energy Ho 311, = SBS L(u)duds (2.2)

provided u satisfies all the boundary conditions at the shell edges; g == 1 at § and
£ = O at S — So.

We derive the orthogonality conditions by means of the Lagrange principle for §4=0,

811 + { { mu~duds + p {{{ vorsvadr =0 2.3)
) T
Let us suppose that the free vibrations take the form of a superposition of the nth and

mth proper modes, Gt + Glioms O = ¢, 0, + ¢uPm (2.4)

@n (t) = 95° c08 (0t + Va), dm (t) = gm° c08 (Omt + Vm)

Substituting (2,4) into (2, 3) and taking account of the arbitrariness of the variations
3¢, and 8¢, swe obtain the two equations

> [kij—m,-ﬂ(gsmuiujds+ p SSSV(I)inDde))] g=0 G=mm (5

=n,m 8 1'

where k;; are the coefficients of the expansion of the potential energy
=1, 2' Z kii9:9;
L
Let us set first ¢, == 0, ¢ = 0 and then ¢, = 0, ¢, == 0, in Eqs, (2.5). This
yields .
ki — o (§§ muguds +p {{{ vo,vo,de ) =0 (2.6)
S T

(i=n,m j=nm)
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Wwriting out Eq, (2.6) for i = n, j == m ,subtracting Eq, (2.6) for i =m, j = n
from the result, and taking advantage ot the symmetry of the coefficients k, m (knm =
= kmp), we obtain the conditions of orthogonality of the proper modes for n <= m ,

\§muunds 48§ V0,90t =0 (ntmy (2.7)
S <
In addition, Eq, (2.6) for i = n, j = m (n == m) implies that k,, = 0, or, with
allowance for (1,2), (2. 2), that

SSSL(uﬂ)umdSHgS 0 20 a5 1 per{{§ A ADdr =0 (2.8)

3 v J
(nskm)
For { = j = n Eq. (2, 6) gives us
kpn = @pmy,,  m, = “ mu,dS - p S“ (VD,)* dr (2.9)
8 T

for the virtual mass associated with the rnth natural vibration mode,
Expressions (2. 7), (2. 8), (2. 9) can be replaced by several equivalent relations obtain-
able by way of Eqs, (2.1) and Green's transformation formula for a volume integral,

3. Equations of motion of a fluid-containing shell, The displace-
ment vector of points of the middle surface of the shell and the fluid particle displace-
ment potential can be written as

U=+ OXr + ) quu,, D =ugr’ +0W+ g, @,  (3.1)
Naul n=1

(X' =r1—rp=2/i; + 2,"iy + 25'i3)

Here r and r, are the radius vectors of the point in question and of the point o il,
iy, i, are the unit vectors of the coordinate system 0z,%,23; ,, &,, 3  are tie coor-
dinates measured from the point Q; u,, (D, .are the proper vibration modes of the
fluid-containing shell fastened along the contour, u,, =0; ¢, (t) are the generalized
coordinates characterizing the deformations of the shell and fluid and the wave motions
of the free surface of the fluid.

We assume that the vector function W = V¥,i, 4-¥,i, 4 Vi, describing the mo-
tion of the fluid during rotation of the undeformed shell is harmonic in the domain T
and generally arbitrary at the free surface 6, The wave equation in T and the dynamic
boundary condition at g are satisfied by virtue of the generalized coordinates g, since
the latter are the coefficients of the system of functions (), complete in T and at S,

—+ 0. This means that W satisfies the following equation and boundary condition :
AW =0 in T, %‘% =r"Xv on S, 3.2)

The function W at the surface ¢ can be subjected to one of the following conditions:
1) as in [1, 2] the function W consists of Zhukovskii potentials describing a motion of
the fluid in which the free surface remains flat and rotates together with the undeformed
shell; here W / dv =1’ X v at g; (2) as in [3], the function W describes a motion
during rotation of the undeformed shell such that the free surface of the fluid remains
plane and parallel to the unperturbed free surface, g / dv = ¢ at @, where
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6 = ¢4i; -+ iy -+ c4i; can be determined from the condition of a constant fluid

volume, ¢, =0, Cy = %nga’dc, €g= — —-:;——S‘xz’da
s % s %"

3) in calculating "rapid” motions of the shell when practically no lower modes of the
gravitational waves at the free surface are excited and when the influence of g is negli-
gible, it is convenient to subject the function Y to the condition W == () on o.

We begin by calculating the variation of the work performed by the inertial forces of
the shell and fluid, Making use of expansions (3, 1), recalling (3, 2) and orthogonality
conditions (2, 7), and carrying out the appropriate transformations, we obtain

{§ murduds + pSSS YOSV Dt = [ugm, + 078 + > q,"‘mo,,} du, 4-
8§

n=i

+ [uo"S + e *J + 2 q" 2'Oﬂjl 600 + Z [“O.mOn + 90")"011 + qn”mn] bqn (3'3)

n=1

Here myis the mass of the shell and fluid; § and J are the tensor of static moments
and the inertia tensor, respectively (S’ is the associated tensor),

{ 0 s - Sy
S=|—8 0 s s.
3 —51 O1 } + O
S, = ds, S = v ¥ g
K SsS Mk ix Ps§§a P ds

I =151+ Uil

A 4 4 ’ a“r
ij°msgm(6jkr'——:c,-zk)d5, JJk=pSS ‘Fj k dS
8 Set-G v
0, is the Kronecker delta;f, k=1,2,3
ik )

me, = { { mu,ds 4 p {§ ©,vas
8 8s-+0

hon = SsSm(r'xuﬂ)dS—%-p SL (3.4)

Now let us write out the expression for the variation of the potential energy of the
shell and fluid, Substituting expansions (3,1) into (1.2) and recalling orthogonality con-
dition (2, 8) for the proper modes, we obtain

o0 o0
O = [0C + 3, g.0n| 900+ 3 tan + Gs02mal 80, (3.5)
n=1 n==]
where

Y, av 3
C= {Cikls Cik = pgSS av3 avk do + 6805 98y, (3’6)
<]
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— o _9%h {cont,)
—pgSS T a - do+ EY

With allowance for (3,1) and for the fact that u, | p == 0, we can rewrite expression
(1. 3) for 84 as

84 = (P — T) du, + (M — H) 68, + 2 Qndqn (3.7)
n=t
P= SSS @S, M= SSS (FXq)dS,  Qn= SSS @S (3.8)

Substituting expressions (3, 3}, (3, 5),(3.7) into Eq, (1. 1) and equating the coefficients
of the arbitrary variations éum &6 o 8¢y to zero, we obtain an expression for the prin-
cipal vector and for the principal moment of all the forces exerted by the vibrating
fluid-containing shell on the carrying body

T=-— (mo“o" + 56," + él MonGn ) +P

He — (50" 430"+ 3 douta™+ Ot 3 sont J+m @9

n=—=1 n=1
and also the equations of the vibrations of the fluid-containing shell in normal coordi-

nates, Mgate™ + Aonlp™ + M7, - %00 + ©,2mq, = @ (3.10)
(!‘! = 1, cev s 00)

1f the carrying body is an absolutely rigid solid, then it can be assumed attached to
the shell, and the integration involved in computing the mass characteristics m,, S,
J, C, the principal vector P, and the principal moment of external moment M must
be extended to the volume of the solid; in this case Eqs, (3.9) for T = H == 0 become
the equations of motion of a solid carrying a thin-walled fluid-containing shell, The
coefficients in Eq, (8.10) remain unchanged,

Equations (3, 9),(3,10) for T = H = 0 are of the same form as the equations of
motion of an absolutely rigid solid with a cavity partly filled with ideal incompressible
fluid [1~4], and become the latter if the shell is assumed to be nondeformable and the
fluid incompressible, The coordinates ¢, then describe the wave motions at the free
surface,

4, A shell of revolution, Let us express the vector of displacements of the
middle surface of a shell of revolution in terms of its components along the tangents to
the coordinate lines ¢ and ¢ (Fig. 1) and along the exterior normal v to the surface at
point under consideration, U = uey -+ vey -+ wy

where e;and e;are the unit vectors of the coordinate lines ¢ and 0.

The potential energy IT,.in the general case can be expressed as a sum of three com-
ponents , Mo = I{Y + n® + oM (4.4)
Here T{V is the potential energy of shell deformation on the basis of the Kirchhoff

hypothesm [5]; T is the potential energy of the forces in the middle surface which

arise in unperturbed motion; Hfa’ is the potential energy of the body forces of the fluid
during perturbed motion in the case of a stationary free surface, Following [6], we express
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@
o % oo % SS [N1° (013 + B1st)+ N3® (01 + O1a?) + 2M19°0184] dS (4.2)
)
For a shell of revolution we have
u 1 dw
%= -_1_ — ——ﬁ-‘- . —6-6- ,
v 1 ow R = R;sin¢@
Y =-RF " — "R 3 ° dS=RiRdpdd

1 ) (01) a1
ﬂna—z—[—-—'nl o — Row Y

— '}T(‘%‘ _ .ﬁ%v)] (4.3)

Here R, and Rj are the principal radii of
curvature of the middle surface of the shell,
The hydrostatic pressure acting on a shell
whose axis is parallel to the axis Oz, is given
. by ) (4.4)
Fig, 1 p = pg [(H — z;) — (usin ¢ — w cos ¢)]
Here z; is the coordinate of a point on Sp
in unperturbed motion; z, = H at 0. The variation of the work performed by the hydro-
static pressure in unperturbed motion with allowance for the change d§* = dS (1 +
+ &; + e2) in the area of the shell elements as a result of deformation can be written as

54, = ES (6w + 8:0u + 8601 (1 -+ &1 + e3) dS
'
Substituting the pressure p (4.,4), the angles of rotation 9, and &, (4, 3), and the strains
1 ou w 1

o w Lw  u v
“a="pr % TR ' U=TF % T & WYHtT;

into this expression and retaining only the linear terms in front of the displacement vari-
ations, we obtain

84, = pg | S (I — 1) dwdS + “ (p1u -+ psby + pw) dS (4.5)
‘S" .S:r
1 ow q 1 Ow \
px=pg(H——zl)7?T<“"'aT/‘ P“ng(H'“")—F{(”" sing 90 )

1 6u . 1
Py, = Pg {—(H—J:x)Tl B¢ Tsine—(H—z)rctg]u—
1 o i 1 1
——(H—xl)T—de—'—-'_coscp + (H —x1) -E—_}_—[E _ w} (4.6)
Here p1, ps, P, are the components of the reduced load acting on the shell due to

hydrostatic pressure during perturbed motion,
Expression (4, 5) becomes
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xqu

an
84, = pg SS (H — z:) 5wdS + pg { S (H — zy) 3@@9} — 8TEY 4.7
Ss 4

Xyt

n§,3)=--?§~SS{(H—m) [—-,%; u’—i-“%;‘ v’+(—%;+—%;)wﬂ+ 2-—1—?%510]+
So

+ wtcos @ + —I}%% [(H — z1) Ru} w} ds (4.8)

The second term in expression (4, 7) for shells closed below at z; == zie is always equal
to zero, and in this case we have

Ol = — SSS (p1d + psbo + p Sw) dS (4.9)

In accordance with (4,1} the operator L (...} can also be expressed in terms of three
componernts, L(u) = L®q) L@ () + L® (u)
and by virtue of (4, 8), (4. 9)

L® (u) = — & (pre1 + pe2 + pY)

is selfadjoint, as are LV (u) and L(? (u).

when applied to a shell of revolution fastened axisymmetrically along the closed con-
tour I' with the point 0’ placed on the shell axis, system of equations of perturbed motion
{3. 9), (3. 10) breaks down into equations describing the longitudinal axisymmetric vibra~
tions, into two similar independent systemns of equations describing the transverse anti-
symmetric vabrations in the planes Ozzz and Qz,z,, and into equations of asymmetric
vibrations unrelated to the motion of the shell as a rigid body,

The equations of the longitudinal vibrations are

e e]
Ty e (mou;1 -+ 2 momq:‘) + P
n=1
Monitig + Molp + m;%fcqn = Qn =1, ., ) {4.10)
The equations of the transverse vibrations in the plane Ozz, are
o0
Ta==— (mo"oa + S29* B0 - 2 moﬁgn) + P, (411>
R {

% oo
[Hy= — <Szz*a;; + In%0n + 2 ?"Onsé;; w— g822%002 + 2 xﬁnaqn) -+ M

==} fiz=m)
SR W W 2 —
Mongtioz “ClrmOm +m.g, + RonaBoz + @, Pm g, Qn
(R==1,,.,.,00)

Here

A\

v
Spo* = —m mo-”;;’ +p SS( avﬁ — "3’) zd3
)

Fog* = SS m (:z:l" -} z,") as + PS S aa‘i“.' Wﬁds (412}
&

Se+0




Equations of perturbed motion of a body with a thin elastic shell 387

- 1 { (cont,)
Rons = SS I.Nl" 7 (U, — W, ) cos*d — Ny° 7 (V.89 +W )cossin?@ -
)

1 1 1 1
+5 (V1° + Ny°) (TU" +&r v, +TVncosq>) sin @ sin29] ds 4

+ pg SS[(H—-'L':) (—U,cos?8+ V, cosqsin?0) — RW cos?f]dS +

Se
avy, oD,
—_— d:
+e8 SGS av ov ’

Here z;,’ is the coordinate of the center of gravity of the fluid-containing shell meas-
ured from the point 0’; U, (9) cos 6, ¥, (¢) sin 6, W, (¢) cos 0 are the displacement
components of the n th proper antisymmetric vibration mode of the shell,

The equations of the asymmetric vibrations when there are two or more meridional
node lines on the surfaces S and ¢ are
o . _ _ ‘
m.9. + © . mgq,= Qn (n=1,...,0) (4.13)

6., The mixed variational principle, Determination of the coefficents
of Egs. (8. 9), (8. 10) describing the perturbed motion of a fluid-containing shell requires
knowledge of the vector function ¥, of the proper vibration modes u,, @, , and of the
frequencies o, of the fastened fluid-containing shell,

The functions ¥ and @, for arbitrary shells containing fluid volumes which do not
admit of complete separation of variables in solving the Helmholtz equations can be
determined only approximately, Solution of the problem by variational methods in dis-
placements entails difficulties having to do with satisfying kinematic boundary condition
(1.4) at the wet surface of the shell [7].

A Castigliano-type variational principle {8, 9] is an effective means of determining
the natural frequencies and modes and also the function¥ in the case of undeformed
cavities containing an incompressible fluid, This principle yields continuity equation
(1. 5) and kinematic boundary condition (1, 4), It is also convenient for computing the
vibrations of momentless inertialess liquid-containing shells [10],

Vibration modes requiring allowance for the moment and inertial characteristics of
the shell can be computed by a mixed variational principle in which the shell displace-
ments are regarded as independent functions together with the pressure in the fluid, The
mixed variational principle was applied to the case of an elastic body with cavities con-
taining an incompressible fluid in [11],

Let us consider the mixed variational principle for computing the natural vibrations
of an elastic shell containing a heavy compressible fluid, It is convenient to proceed
on the basis of the Lagrange principle with undetermined multipliers in formulating
varjous versions of the mixed variational principle, The undetermined Lagrange multi-
plier in the equation of continuity of the fluid and in the kinematic boundary condition
at the wet surface of the shell is the perturbed pressure in the fluid, which is equal to
pw® in the case of potential motion of the fluid during harmonic vibrations,

If the fluid is compressible, the equation of continuity follows directly from
Lagrange principle (1.1), All that is necessary in this case is that the work performed
by the reactions in retaining kinematic constraints (1,4) at the wet surface of the shell
and at the shell edges f; (u) = 0; (where (f; (...) is a linear algebraic or differential
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operator) be added to Eq, (1.1); this work is given by

A:prSm{ww%)ds+28xifi(u)dz (5.1)
L 1

Here A; are the reactions of the fastened edges of the shell, They can be represented in
terms of linear differential expressions in u on the basis of static relations; alternative-
1y, they can be regarded as independent unknown functions, which is even more conve-
nient in some cases,

Allowing for potential energy (1.2) and work (5. 1), the equation of the variational
Lagrange principle with undetermined multipliers in the case of free harmonic vibrations
can be written in the form

2 2
§{§e~—%SSmﬁ"dS‘-« il QS\'DWJS%-

Sy

n .g-gi (g - m"‘D) Sds+ o KSS (AD + 6"D) Addr —
[+ T

w?
,.-%—-SS(\W—-‘?—:%-) d’dS“ZSKili(U)dl}=0 (5.2)
S i

Variational equation {5, 2) is not valid if the fluid is incompressible {r — o} and if
the harmonic character of the function ¢ is not a prerequisite, Thus, Eq, (5,2) is valid
largely in the range of acoustic vibrations,

Another version of the mixed variational principle which yields the continuity equation
for both a compressible and an incompressible fluid can be obtained by expressing the
potential energy of compression of the fluid in terms of the pressure, i, e,

M=o+ "f SS(-—%—%—-)gdc+ e SSSfD?dr (5.3)
]

and by adding the work performed by the pressure in retaining the kinematic constraint
(the continuity equation) to expression (5,1); this work is given by

AspmsSSm( a¢>ds+pngss (A®+-—(§;—®)dt+28zt,fi(u)dl 5.4
S ) H

e

Making use of (5, 3) and (5.4}, we can now rewrite (1,1) as

6{30.,——‘%3—“”@&&3« E—?—-RS{B&WS—&
s s
p ) I po? o
+TSS<g——a—V— ww-(b) -——-—“ds»-*-—-—rg S(A(D-f—*;;'(l))tbdt—-
[} T

_ _P‘éiSS(WM 66(1; )mdS_ZS).i/i(u)dl}mO (5.5)
S i

o

Equations (5, 2) and (5. 3) make it possible to obtain the fluid displacement potential
@ and the shell displacements ¥ in the form of independent expansions in given coordi-
nate functions with unknown coefficients, This in turn makes it possible to reduce the
problem of determining the natural vibration frequencies and modes of a fluid-containing
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shell to a system of linear algebraic equations by the Ritz method,
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The state of stress of an elastic 1od of finite length not acted on by bending moments
and fastened to a semi-infinite plate is considered, The problem has already been inves-
tigated [1—3], but only for the simpler case where the load is applied to the rod ends,
The present paper concerns the case where the force is applied to the center of the rod,
The case where a heat source or a thermoelastic deformation center 4] is present at
some point of the elastic half-plane is also considered,

As in the aforementioned studies, the problem is stated in the form of a Prandtl integro-
differential equation; methods for solving the latter are the subject of an extensive



